we see that $\alpha_i(n_k) - \beta_i(n_k)$ is a simple random walk on \mathbb{Z} with an absorbing state at 0. Recurrence of simple random walk on \mathbb{Z} implies that $\lim_{n \to \infty} \alpha_i(n) - \beta_i(n) = 0$ a.s. Since this is true for all i, we conclude that $\mathbb{P}[X_n \neq Y_n] \to 0$ as $n \to \infty$. Finally, since h_1 and h_2 are arbitrary, f must be constant.

§7. Embeddings of Finite Metric Spaces.

Definition An invertible mapping $f : X \to Y$, where (X, d_X) and (Y, d_Y) are metric spaces, is a C-embedding if there exists a number $r > 0$ such that for all $x, y \in X$

$$rd_X(x, y) \leq d_Y(f(x), f(y)) \leq Crd_X(x, y).$$

The infimum of numbers C such that f is a C-embedding is called the distortion of f and is denoted by $\text{dist}(f)$. Equivalently, $\text{dist}(f) = \|f\|_{\text{Lip}} \|f^{-1}\|_{\text{Lip}}$, where

$$\|f\|_{\text{Lip}} = \sup \left\{ \frac{d_Y(f(x), f(y))}{d_X(x, y)} : x, y \in X, x \neq y \right\}.$$

We will be interested in embeddings of finite metric spaces and in application of Markov type 2 results to prove lower bounds on distortions of embeddings of certain spaces. We will see that the any embedding of the hypercube $\{0, 1\}^k$ in Hilbert space has distortion at least $c\sqrt{k}$, for some $c > 0$ (Enflo, 1969). In Exercise 2 we will show by Markov type arguments that any embedding of an expander family into Hilbert space has distortion at least $\Omega(\log n)$. This was originally shown by Linial, London and Rabinovich (1995) to prove that a theorem of Bourgain (1985), stating that any metric on n points can be embedded in $p^{\log n}$ with distortion $O(\log n)$, is tight.

We first prove a dimension reduction lemma due to Johnson and Lindenstrauss (1984).

Lemma 7.1. For any $0 < \epsilon < 1/2$ and $v_1, \ldots, v_n \in \mathbb{R}^n$ with Euclidean metric, there exists a linear map $A : \mathbb{R}^n \to \mathbb{R}^k$ where $k = O(\log n/\epsilon^2)$, with distortion at most $1 + \epsilon$ on the n point space $\{v_1, \ldots, v_n\}$.

Proof. Let $A = \frac{1}{\sqrt{k}} (X_i^{(j)})_{1 \leq i \leq n, 1 \leq j \leq k}$ be an $n \times k$ matrix where the entries $X_i^{(j)}$ are independent standard normal $N(0, 1)$ random variables. We prove that with positive probability this map has distortion at most $1 + \epsilon$. For any $i \neq j$, let $u = \frac{v_i - v_j}{\|v_i - v_j\|} \in S^{n-1}$, and denote $u = (u_1, \ldots, u_n)$. Clearly,

$$uA = \frac{1}{\sqrt{k}} \left(\sum_{i=1}^n u_i X_i^{(1)}, \ldots, \sum_{i=1}^n u_i X_i^{(k)} \right).$$
So
\[\|uA\|^2 = \frac{1}{k} \sum_{j=1}^{k} \left(\sum_{i=1}^{n} u_i X_{i}^{(j)} \right)^2. \]

Note that for any \(j \) the sum \(\sum_{i=1}^{n} u_i X_{i}^{(j)} \) is distributed as a standard normal random variable with mean 0, and since \(\sum_{i=1}^{n} u_i^2 = 1 \), the variance is 1. So \(\|uA\|^2 \) is distributed as \(\frac{1}{k} \sum_{j=1}^{k} Y_j^2 \), where \(Y_1, \ldots, Y_k \) are independent standard normal \(N(0,1) \) random variables. We wish to show that \(uA \) is concentrated around its mean. To achieve that we compute the moment generating function of \(Y^2 \) where \(Y \sim N(0,1) \). For any real \(\lambda < 1/2 \) we have
\[E e^{\lambda Y^2} = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{\lambda y^2} e^{-y^2/2} dy = \frac{1}{\sqrt{1-2\lambda}}, \]
and using Taylor expansion we get
\[\varphi(\lambda) = |\log E e^{\lambda (Y^2-1)}| = \frac{1}{2} \log(1 - 2\lambda) - \lambda \]
\[= \sum_{k=2}^{\infty} \frac{2^{k-1} \lambda^k}{k} \leq 2\lambda^2 (1 + 2\lambda + (2\lambda)^2 + \cdots) = \frac{2\lambda^2}{1-2\lambda}. \]

Now,
\[P[\|uA\|^2 > 1 + \epsilon] = P \left[e^{\lambda \sum_{i=1}^{k} (Y_{i}^{2}-1)} > e^{\lambda \epsilon k} \right] \leq e^{-\lambda \epsilon k} e^{K \varphi(\lambda)} \leq e^{\left(-\lambda \epsilon k + \frac{2\lambda^2 k}{1-2\lambda}\right)}. \]

Taking \(\lambda = \epsilon/4 \) and \(k \geq 24 \log n/\epsilon^2 \), and recalling that \(\epsilon < 1/2 \), yields
\[P[\|uA\|^2 > 1 + \epsilon] \leq \exp(-\epsilon^2 k/12) \leq n^{-2}. \]

One can prove similarly that
\[P[\|uA\|^2 < 1 - \epsilon] \leq n^{-2}. \]

Since we have \(\binom{n}{2} \) pairs of vectors \(v_i, v_j \) we showed that with positive probability, for all \(i \neq j \),
\[(1 - \epsilon) \|v_i - v_j\| \leq \|v_i A - v_j A\| \leq (1 + \epsilon) \|v_i - v_j\|, \]
which implies that the distortion of \(A \) is no more than \(1 + \epsilon \).

\[\square \]

Remark 7.2. From algorithmic perspective it is important to achieve Lemma 7.1 using i.i.d., \(\pm 1 \) with probability 1/2, random variables as our \(X_i^{(j)} \). This is in fact possible for any random variable \(X \) for which there exists a constant \(C > 0 \) such that \(E e^{\lambda X} \leq e^{C \lambda^2} \).
(for $X = \pm 1$ with probability $1/2$ we have $E e^{\lambda X} = \cosh(\lambda) \leq e^{\lambda^2/2}$) by the following argument:

Let $Y = \sum_{i=1}^k u_i X_i$ with $\sum_{j=1}^k u_j^2 = 1$ and let Z be distributed $N(0,1)$ independently of $\{X_i\}$. Recall that for all real α we have $E e^{\alpha Z} = e^{\alpha^2/2}$. Since Y and Z are independent, using Fubini's Theorem we get that for any $\lambda < \frac{C}{2}$

$$E e^{\lambda Y^2} = E e^{\frac{\sqrt{2\lambda Y}}{2}} = E e^{\sqrt{2\lambda Y} Z} = E e^{\sum_{i=1}^k \sqrt{2\lambda u_i} X_i Z} = E E \left[e^{\sum_{i=1}^k \sqrt{2\lambda u_i} X_i Z} \mid Z \right]$$

$$\leq E e^{\lambda \sum_{i=1}^k u_i^2 Z^2} = E e^{C \lambda Z^2} = \frac{1}{\sqrt{1 - 2C\lambda}},$$

and the rest of the argument is the same as Lemma 7.1.

Theorem 7.3. **(Bourgain, 1985)** Every n-point metric space (X,d) can be embedded in an $O(\log n)$ -dimensional Euclidean space with an $O(\log n)$ distortion.

Proof. We follow Linial, London and Rabinovich (1995). Let $\alpha > 0$ be determined later. For each cardinality $k < n$ which is a power of 2, randomly pick $\alpha \log n$ sets $A \subset X$ independently, by including each $x \in X$ with probability $1/k$. We have drawn $O(\log^2 n)$ sets $A_1, \ldots, A_{\alpha \log^2 n}$. Map every vertex $x \in X$ to the vector

$$\frac{1}{\log n} (d(x,A_1), d(x,A_2), \ldots).$$

Denote this mapping by f. We will show this mapping to $\ell^2_2(\log^2 n)$ has almost surely $O(\log n)$ distortion, and using Lemma 7.1 this yields the required result.

It is easy to observe that this map is not expanding. By the triangle inequality, for any $x,y \in X$ and any $A_i \subset X$ we have $|d(x,A_i) - d(y,A_i)| \leq d(x,y)$, so

$$\|f(x) - f(y)\|^2 \leq \frac{1}{\log^2 n} \sum_{i=1}^{\alpha \log^2 n} |d(x,A_i) - d(y,A_i)|^2 \leq \alpha d(x,y)^2.$$

For the lower bound, let $B(x,\rho) = \{y \in X \mid d(x,y) \leq \rho\}$ and $B^0(x,\rho) = \{y \in X \mid d(x,y) < \rho\}$ denote the closed and open balls of radius ρ centered at x. Consider two points $x \neq y \in X$. Let $\rho_0 = 0$, and let ρ_t be the least radius ρ for which both $|B(x,\rho)| \geq 2^t$ and $|B(y,\rho)| \geq 2^t$. We define ρ_t as long as $\rho_t < \frac{1}{4} d(x,y)$, and let \hat{t} be the largest such index. Also let $\rho_{\hat{t}+1} = \frac{d(x,y)}{4}$. Observe that $B(y,\rho_{\hat{t}})$ and $B(x,\rho_{\hat{t}})$ are always disjoint.

Notice that $A \cap B^0(x,\rho_t) = \emptyset \iff d(x,A) \geq \rho_t$, and $A \cap B(y,\rho_{\hat{t}-1}) \neq \emptyset \iff d(y,A) \leq \rho_{\hat{t}-1}$. Therefore, if both conditions hold, then $|d(y,A) - d(x,A)| \geq \rho_t - \rho_{\hat{t}-1}$.
Let us assume that $|B^o(x, \rho_i)| < 2^i$ (otherwise we argue for y). On the other hand, $|B(y, \rho_{i-1})| \geq 2^{i-1}$. Let $k = 2^t$ and let $A \subset X$ be chosen randomly by including each $x \in X$ with probability $1/k$. We have

$$P[A \text{ misses } B^o(x, \rho_t)] \geq (1 - 2^{-t})^{2^t} \geq \frac{1}{4},$$

and

$$P[A \text{ hits } B(y, \rho_{t-1})] \geq 1 - (1 - 2^{-t})^{2^{t-1}} \geq 1 - e^{-1/2} \geq \frac{1}{2}.$$

Since these events are independent, such an A has probability at least $\frac{1}{2}$ to both intersect $B(y, \rho_{t-1})$ and miss $B^o(x, \rho_t)$. Since for each k we choose $\alpha \log n$ such sets, by Theorem 1.1, the probability that less than $\frac{\alpha \log n}{16}$ of them have the previous property is less than

$$e^{-2(\alpha \log n/16)^2/(\alpha \log n)} \leq n^{-\alpha/128} \leq n^{-5},$$

by choosing α such that $\alpha/128 > 5$. So with probability tending to 1, for any $x, y \in X$ and k we have at least $\alpha \log n/16$ sets which satisfy the condition. Summing it up gives

$$\|f(x) - f(y)\|_2^2 \geq \frac{1}{\log^2 n} \sum_{i=1}^{t+1} \frac{\alpha \log n}{16} (\rho_i - \rho_{i-1})^2.$$

Since $\sum_{i=1}^{t+1} (\rho_i - \rho_{i-1}) = \rho_{t+1} = \frac{d(x, y)}{4}$, we have

$$\|f(x) - f(y)\|_2^2 \geq \frac{\alpha}{16 \log n} \left(\frac{d(x, y)}{4(t + 1)} \right)^2 (t + 1) \geq \frac{\alpha d(x, y)^2}{256(t + 1) \log n} \geq \frac{\alpha d(x, y)^2}{256 \log^2 n},$$

hence the distortion of f is $O(\log n)$ with probability tending to 1.

Proposition 7.4. (Enflo, 1969) There exists $c > 0$ such that any embedding of the hypercube $\{0, 1\}^k$ in Hilbert space has distortion at least $c \sqrt{k}$.

Proof. Recall that in Exercise 1 of Chapter 3 we proved that if $\{X_j\}$ is a simple random walk in the hypercube, then

$$Ed(X_0, X_j) \geq \frac{j}{2} \quad \forall j \leq k/4.$$

Take $j = \frac{k}{4}$. By Jensen’s inequality, $Ed^2(X_0, X_{k/4}) \geq k^2/64$. Now let $f : \{0, 1\}^k \to L^2$ be a map. Assume without loss of generality that f is a non-expanding, i.e., $\|f\|_{\text{Lip}} = 1$ (otherwise, take $f/\|f\|_{\text{Lip}}$). By Theorem 3.1 it follows that L^2 has Markov type 2 with constant $M = 1$, so,

$$Ed\left(f(X_0), f(X_{k/4})\right) \leq k.$$

We conclude

$$\|f^{-1}\|_{\text{Lip}} k \geq \|f^{-1}\|_{\text{Lip}} Ed^2(f(X_0), f(X_{k/4})) \geq Ed^2(X_0, X_{k/4}) \geq k^2/64,$$

hence $\|f^{-1}\|_{\text{Lip}} \geq \frac{\sqrt{k}}{8}$, which implies the result.

42
REMARK 7.5. Enflo's original proof gives \(c = 1 \). See Exercise 1 for the proof of this fact.

We now prove a theorem of Bourgain (1986).

THEOREM 7.6. Any embedding of a binary tree of depth \(M \) and \(n = 2^{M+1} - 1 \) vertices into a Hilbert space has distortion \(\Omega(\sqrt{\log M}) = \Omega(\sqrt{\log \log n}) \).

REMARK 7.7. See Exercise 3 for an embedding with distortion \(O(\sqrt{\log M}) \).

We first prove two lemmas.

Lema 7.8. Let \(M = 2^m \) for \(m \geq 1 \) and \(y_0, \ldots, y_n \in \mathbb{R} \), then

\[
\sum_{i=1}^{M} (y_i - y_{i-1})^2 = \frac{(y_M - y_0)^2}{M} + \sum_{k=1}^{m} \frac{1}{2^k} \sum_{j=1}^{2^{m-k}} (y_{j2^k} - 2y_{(2j-1)2^{k-1}} + y_{(j-1)2^k})^2.
\]

Proof. This can be proved by induction on \(m \), however, we will prove it using Parseval's identity. Consider the Haar orthonormal basis of \(\mathbb{R}^M \) which is defined by the following vectors: for any \(1 \leq k \leq m \) and any \(1 \leq j \leq 2^{m-k} \) let \(I(k; j) \) denote the set of indices \(\{(j - 1)2^k + 1, \ldots, j2^k\} \) and define

\[
\psi_{I(k; j)}(i) = \begin{cases} \frac{1}{2^{k/2}}, & (j - 1)2^k < i \leq (2j - 1)2^{k-1}; \\ -\frac{1}{2^{k/2}}, & (2j - 1)2^{k-1} < i \leq j2^k. \end{cases}
\]

Together with the vector \(\psi_1 = \frac{1}{\sqrt{M}}(1, \ldots, 1) \) this gives \(2^m \) orthonormal vectors in \(\mathbb{R}^M \).

Now define \(z \in \mathbb{R}^M \) by \(z_i = y_i - y_{i-1} \), so the LHS of the lemma becomes \(\sum_{i=1}^{M} z_i^2 \), which, by Parseval's identity, is

\[
\langle z, z \rangle = \langle z, \psi_1 \rangle^2 + \sum_{k=1}^{m} \sum_{j=1}^{2^{m-k}} \langle z, \psi_{I(k; j)} \rangle^2,
\]

which can easily be seen to be the RHS of the lemma.

Lemma 7.9. Let \(M = 2^m \), and suppose that \(Y_0, Y_1, \ldots \) is a function of a Markov chain taking values in Hilbert space. For any \(1 \leq k \leq m \) and \(1 \leq j \leq 2^{m-k} \) let \(r = (2j - 1)2^{k-1} \) and let \(\tilde{Y}(k; j) \) denote the random process which is equal to \(\{Y_t\} \) for time \(t \leq r \) and evolves independently for time \(t > r \). Write \(A^M_{i=1}(\cdot) = \frac{1}{M} \sum_{i=1}^{M} \cdot \) for the averaging operator. Then

\[
\mathbb{E}[A^M_{i=1} \|Y_i - Y_{i-1}\|]\geq \mathbb{E}\left[\frac{1}{2} \sum_{k=1}^{m} A^2_{j=1} \frac{\|Y_{j2^k} - \tilde{Y}_{j2^k}(k; j)\|^2}{2^{2k}}\right].
\]

Proof. Since all the distances in the lemma are squared, we can assume without loss of generality that \(\{Y_i\} \) is real valued. Let \(k, j \) be as in the lemma. Write \(\mathbb{E}_r(\cdot) = \mathbb{E}[\cdot | Y_r] \).
and \(\tilde{Y} = \tilde{Y}(k; j) \). Let \(t > r \) and denote \(\mu_r = \mathbb{E}_r[Y_t] \). Note that by the definition of \(\tilde{Y} \), we have that \(Y_t \) and \(\tilde{Y}_t \) are independent given \(Y_r \), and so \(\mathbb{E}_r[Y_t \tilde{Y}_t] = \mathbb{E}_r[Y_t] \mathbb{E}_r[\tilde{Y}_t] \). Also, since \(Y_t \) has the same distribution as \(\tilde{Y}_t \), we have

\[
\mathbb{E}_r[Y_t - \tilde{Y}_t]^2 = \mathbb{E}_r[(Y_t - \mu_r) - (\tilde{Y}_t - \mu_r)]^2 = 2\mathbb{E}_r(Y_t - \mu_r)^2 \leq 2\mathbb{E}_r(Y_t - \lambda_r)^2,
\]

for any \(\lambda_r \) which is \(Y_r \)-measurable. The last inequality follows from the fact that \(\mathbb{E}_r(Y_t - \mu_r)^2 \) is the squared length of the projection of \(Y_t \) on the space of \(Y_r \)-measurable functions.

Taking expectation w.r.t to \(Y_r \) on the last inequality gives

\[
\mathbb{E}(Y_t - \lambda_r)^2 \geq \frac{1}{2} \mathbb{E}(Y_t - \tilde{Y}_t)^2. \tag{7.1}
\]

Now apply Lemma 7.8 with \(y_i = Y_i \):

\[
\mathcal{A}_{i=1}^M(Y_i - Y_{i-1})^2 \geq \sum_{k=1}^{m} \mathcal{A}_{j=1}^{2^m-k} \frac{(Y_{j2^k} - 2Y_{(2j-1)2^k-1} + Y_{(j-1)2^k})^2}{2^{2k}}.
\]

Take expectations and apply (7.1) with \(\lambda_r = -2Y_{(2j-1)2^k-1} + Y_{(j-1)2^k} \) to get

\[
\mathbb{E}\mathcal{A}_{i=1}^M(Y_i - Y_{i-1})^2 \geq \frac{1}{2} \sum_{k=1}^{m} \mathbb{E}\mathcal{A}_{j=1}^{2^m-k} \frac{(Y_{j2^k} - \tilde{Y}_{j2^k}(k; j))^2}{2^{2k}},
\]

as required.

Proof of Theorem 7.6. Let \(T \) denote the full binary tree with depth \(M = 2^m \) (for general depths, consider the tree up to depth which a power of 2). Let \(\{Z_i\} \) be the forward random walk on it starting from the root (i.e., at each vertex it goes right/left with probability 1/2). Clearly \(d(Z_i, Z_{i+1})^2 = 1 \) a.s., so \(\mathbb{E}\mathcal{A}_{i=1}^M d(Z_i, Z_{i-1})^2 = 1 \). Also, in the forward random walk, after the splitting at time \(r \), with probability 1/2 the two independent walks will accumulate distance which is twice the number of steps. Thus, \(\mathbb{E}d^2(Z_{j2^k}, \tilde{Z}_{j2^k}(k; j)) \geq 2^{2k-1} \), and we get that

\[
\mathbb{E}\mathcal{A}_{i=1}^M d^2(Z_i, Z_{i-1}) = 1 \leq \frac{2}{m} \sum_{k=1}^{m} \mathbb{E}\mathcal{A}_{j=1}^{2^m-k} \frac{d^2(Z_{j2^k}, \tilde{Z}_{j2^k}(k; j))}{2^{2k}}.
\]

Now let \(F : T \to H \) be an embedding with \(\|F\|_{\text{Lip}} = 1 \), then the previous inequality holds for \(F(Z_i) \) up to a factor of \(\|F^{-1}\|_{\text{Lip}} \), i.e.

\[
\mathbb{E}\mathcal{A}_{i=1}^M d^2(F(Z_i), F(Z_{i-1})) \leq \frac{2\|F^{-1}\|_{\text{Lip}}^2}{m} \sum_{k=1}^{m} \mathbb{E}\mathcal{A}_{j=1}^{2^m-k} \frac{d^2(F(Z_{j2^k}), F(\tilde{Z}_{j2^k}(k; j)))}{2^{2k}}.
\]

By Lemma 7.9 we have

\[
\mathbb{E}\mathcal{A}_{i=1}^M d^2(F(Z_i), F(Z_{i-1})) \geq \mathbb{E} \left[\frac{1}{2} \sum_{k=1}^{m} \mathcal{A}_{j=1}^{2^m-k} \frac{d^2(F(Z_{j2^k}) - F(\tilde{Y}_{j2^k}(k; j)))}{2^{2k}} \right],
\]

which, combined with previous inequality, yields \(\|F^{-1}\|_{\text{Lip}}^2 \geq \frac{m}{4} \), as required. \(\blacksquare \)